Semiautonomous Longitudinal Collision Avoidance Using a Probabilistic Decision Threshold

Jeff Johnson Yajia Zhang Kris Hauser
School of Informatics and Computing

In partnership with:
Transportation Active Safety Institute (TASI)
Volvo Collision Avoidance

THE FUTURE IS HERE
Fatal crash once in every 100,000,000 driven miles [NHTSA 2008]

http://chan4chan.com/archive/tags/highway_traffic
Driver inattention is a major factor in serious traffic crashes [NHTSA 2001]

Semiautonomous Active Safety Systems

Mercedes-Benz Pre-Safe system

Volvo S60 adaptive cruise control
Collision Avoidance in General

• Identify dangerous situations

• *Do not diminish driver alertness*
 – Again: Driver inattention is a major factor in serious traffic crashes [NHTSA 2001]
Our Approach

• Safety Constrained Minimal Interference Principle (SCMIP)
• Formulated two scenarios under this framework:

Collision avoidance braking
Intersection crossing
Safety Constrained Minimal Interference Principle

For some safety threshold α, and the user’s desired control u^d, pick the α-safe control u that is closest to u^d

$$P(\text{safe}) \geq \alpha$$

Decision space
Safety Constrained Minimal Interference Principle

For some safety threshold α, and the user’s desired control u^d, pick the α-safe control u that is closest to u^d

$P(\text{safe}) \geq \alpha$

$u = u^d$

$\alpha = 0.5$

Decision space
Safety Constrained Minimal Interference Principle

For some safety threshold α, and the user’s desired control u^d, pick the α-safe control u that is closest to u^d.
Safety Constrained Minimal Interference Principle

• More formally, satisfy this optimization:

\[u^*_t = \arg \min_{u \in [-1,1]} |u - u^d_t| \]

\[\text{s.t. } P(\text{safe}|u_t = u) \geq \alpha \]

Minimize the difference between the driver’s control and the control to be executed...

...such that the safety of the system is at least \(\alpha \)
Safety Constrained Minimal Interference Principle

• More formally, satisfy this optimization:

\[u_t^* = \arg \min_{u \in [-1,1]} |u - u_t^d| \]

\[s.t. \quad P(\text{safe} | u_t = u) \geq \alpha \]

Minimize the difference between the driver’s control and the control to be executed...

...such that the safety of the system is at least \(\alpha \)
Safety Constrained Minimal Interference Principle

• More formally, satisfy this optimization:

Minimize the difference between the driver’s control and the control to be executed...

\[u_t^* = \arg \min_{u \in [-1,1]} |u - u_t^d| \]

\[\text{s.t. } P(\text{safe}|u_t = u) \geq \alpha \]

...such that the safety of the system is at least \(\alpha \)

Probability of safety of optimal control that starts at \(u_t = u \)
Safety Constrained Minimal Interference Principle

- If $P(\text{safe} \mid u) \geq \alpha$ cannot be satisfied choose the safest control:

$$u_t^* = \arg \max_{u \in [-1,1]} P(\text{safe} \mid u_t = u)$$
Properties of SCMIP

• If the user’s control is safe, then $u = u^d$
• Safety and interference tuned through single parameter α
• But computing $P(safe)$ is hard:
 – Stochastic partially-observable optimal control problem
 – Tractability requires an approximation
$P(safe)$ Approximation

\[
P(safe|u_t = u) \approx \int_x S(x, u) P(x_t = x) dx
\]

- Integrate over optimal hypotheses *assuming the underlying state hypothesis is true*
- Reduces the problem to an integral over deterministic optimal control problems
- When uncertainty is relatively low, this provides a very good approximation

Indicator function, whether system can remain safe under state x given control u

Probability of a given state x
Collision Avoidance Braking

• The problem: Employ a braking policy that avoids collision with an obstacle obstructing the vehicle’s path
 – Obstacle, vehicle moving in same direction along fixed path
 – Vehicle equipped with speedometer and range sensing device
 – System state estimated with EKF
 – Two road surface types: wet and dry
System Structure: EKF Formulation

State vector \(x \)
- Vehicle position \(p_c \)
- Vehicle velocity \(v_c \)
- Obstacle position \(p_o \)
- Obstacle velocity \(v_o \)
- Obstacle acceleration \(a_o \)

Observation term \(z \)
- Relative distance \(d \)
- Speedometer reading \(v \)

Dynamics
\[
\begin{align*}
 p_c &= p_c + v_c t + \frac{1}{2} u a_{c_{\text{max}}} t^2 \\
 v_c &= v_c + u_k a_{c_{\text{max}}} t \\
 a_{c_{\text{max}}} &= a_{c_{\text{max}}} \\
 p_o &= p_o + v_o t + \frac{1}{2} a_o t^2 \\
 a_o &= a_o
\end{align*}
\]

Sensor model
\[
\begin{align*}
 d &= p_o - p_c \\
 v &= v_c
\end{align*}
\]

Additive noise
\[
\begin{align*}
 x_{t+1} &= f(x_t, u_t) + \epsilon_1 \\
 z_t &= h(x_t) + \epsilon_2
\end{align*}
\]

Braking term \(0 \leq u \leq 1 \) indicates how hard to brake:
- \(u = 0 \), no brake
- \(u = 1 \), brake with maximum deceleration
Policy

- Estimate stopping position of vehicle under maximum braking
- Estimate position of obstacle at time vehicle comes to full stop
- If overlap, brake to maintain safe stopping distance
- Smooth brake output
- $S(x, u)$ is given by whether there is a collision for a given state and control
Five Test Scenarios

Stationary obstacle

False negative

False positive

Transient obstacle

Hard braking obstacle

Two road surface types:
- Dry pavement: $a_{cmax} = -5 \text{ m/s}^2$
- Wet pavement: $a_{cmax} = -3 \text{ m/s}^2$
Policy Evaluation

Risk Index: \((CV_{avg} / CV_{safe})^2\)

Interference Index: \(c_1 DT + c_2 ET + c_3 SD\)

- \(CV_{safe}\): Safe collision velocity
- \(DT\): Penalizes erratic braking
- \(ET\): Penalizes slow driving
- \(SD\): Penalizes early stopping
- \(c_1…3\): Proportionality constants
Results

![Graph showing results with different risk indices and interference index. Legend includes Ideal, Probabilistic, Probabilistic (sm), Basic, and Basic (sm).]
Intersection Crossing

- **The problem**: Employ a longitudinal control policy that allows a vehicle to safely exit an intersection during an unprotected left-hand turn.
- How do we compute $S(x, u)$?
• We extend Kant and Zucker’s [1986] path-time space decomposition to include dynamic constraints

• Safe trajectories end at goal position while missing obstacles and respecting constraints
Obstacles in Path-Time Space

- Occupy some portion of path over time
- A forbidden region (red) in P-T space
- Bounding box approximation (black)
- These constraints affect the shape of the trajectories (blue)
Analytical Planner

- Exact, optimal, and polynomial-time
- Can be used in the indicator function $S(x, u)$ when computing $P(safe)$
Analytical Planner
Computation of $S(x, u)$

- For a given state and control, the planner determines whether a feasible trajectory to the goal region exists.

The same scenario with slightly different initial velocities:

- $v_i = 4.85$ m/s \textit{feasible}
- $v_i = 4.90$ m/s \textit{infeasible}

- For a given state and control, the planner determines whether a feasible trajectory to the goal region exists.
Summary

• Presented Safety Constrained Minimal Interference Principle
• Formulated two scenarios:
 – Collision Avoidance Braking
 – Unprotected Left-Hand Turn at Intersections
Future Work

- Ground risk index and interference index on human drivers
- Study human reactions to semiautonomous longitudinal control (short-term and long-term adaptations)

The DriveSafety DS-600c Driving Simulator at TASI
Thank you.