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Volvo Collision Avolidance

THE FUTURE IS HERE
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http://chan4chan.com/archive/tagsiighway traffic
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Driver inattention is a major
factor in serious traffic crashes
[INHTSA 2001]

http://jacksonfamilyrobinson.blogspot.com/2009/10/drivirmadness.html
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Semiautonomous Active Safety Systems

MercedesBenz PreSafe system

AAA

Approx. 2.6s Approx. 1.6s 0.6s

before the accident* before the accident the accident
Visual and acoustic After the audible warning has  If the driver has still failed
collision warning been repeated three times: to respond: autonomous

PRE-SAFE" Brake automati- emergency braking

cally initiates partial braking  with maximum braking

if the driver has not responded  performance to reduce
impact severity

Volvo S60 adaptive cruise control



Collision Avoidance In General

A Identify dangerous situations

A Do not diminish driver alertness

I Again: Drivemattention is a major factor in
serious traffic crashes [NHTSA 2D01



Our Approach

A SafetyConstrained Minimal Interference Principle (SCOMIP
A Formulated two scenarios under this framework:
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Collision avoidance braking Intersection crossing



Safety Constrained Minimal
Interference Principle
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Safety Constrained Minimal

Interference Principle
A More formally, satisfy this optimization:

Minimize the
difference between
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Safety Constrained Minimal
Interference Principle

A More formally, satisfy this optimization:

Minimize the

difference between

1KS RNAGOSNIA O2y (NPt
and the control to

60S SESOdzi SRX

T =arg min |u—uf
ue|[—1,1]
S.L. >

XadzOK GKFaG 0KS - FSe 0 KS
system is at leadt Probability of safety of
optimal control that

starts atu, = U



Safety Constrained Minimal
Interference Principle

AlfPGafelud hx OF yy20 o0S &l GAat¥
choose the safest control:

u; = arg max P(safe|u; = u)
ue|[—1,1]



Properties of SCMIP

ALT (UKS dzaSNXQa uody i NP f
A Safety and interference tuned through single
parameterh

A But computingP(safe)s hard:

I Stochastic partialipbservable optimal control
problem

I Tractability requires an approximation



P(safe)Approximation

P(safe|u; = u) ~ / S(z,u)P(z; = x)dx

]

Indicator function, whether system can  Probability of a given state
remain safe under state given controlu

A Integrate over optimal hypothesessuming the
underlying state hypothesis is true

A Reduces the problem to an integral over
deterministic optimal control problems

A When uncertainty is relatively low, this provides a
very good approximation



CollisionAvoidance Braking

[

A The problemEmploy a braking policy that avoids
Oz2fftAaAz2y G6AUOK |y 20 apath Of
| Obstacle, vehicle moving in same direction along fixed path
I Vehicle equipped with speedometer and range sensing device
| System state estimated with EKF
I Two road surface types: wet and dry



System Structure: EKF Formulatio

State vector x Dynamics
A Vehicle positiorp, Pe= R+ Vb + ¥2Ugna L
. . =V, +
A Vehicle velocity, \;Z i af Femal
A Obstacle positiom, Dy =P, +V,t + Yoat?
A Obstacle velocity, 3=,
A Obsta.cle acceleratioa, R odel
Observation term z d =p, ¢ P,
A Relative distance vV =Ve
A Speedometer reading T
o X1 = f, U0 b 8
. N 1Ay 3 USNY mowkarddo bkkem |z =hk0 b 8
u =0, no brake

u =1, brake with maximum deceleration



Do Do Do I»

T

Policy

Estimate stopping position of vehicle
under maximum braking

Estimate position of obstacle at time
vehicle comes to full stop

If overlap, brake to maintain safe
stopping distance

Smooth brakeutput

S(x, u) is given by whether there is a
collision for a given state and control




Five Test Scenarios

Stationary obstacle

20 m/fs
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}% 100 m

False negative
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Transient obstacle
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False positive
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Wrongly detected by radar
from 1.52T
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Two road surface types:

Dry pavementa,,,.,=-5 m/s’
Wet pavementa,,,=-3 m/S



Policy Evaluation

Riskindex:(C\,,,/ C\y1o)*
Interference Indexc,DT + ¢ET + £SD
A C\/.; Safe collision velocity

A DT Penalizes erratic braking

A ET Penalizes slow driving

A SD Penalizes early stopping

A c, ., Proportionalityconstants



Interference index

Results

A ldeal
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¢ Basic

B Basic (sm)

Risk index



Intersection Crossing

A The problemEmploy

a longitudinal control i iﬁ i |
policy that allows a 8 sl
vehicle to safely exit 8

an intersection during ]

an unprotected ﬁgﬂg I
left-handturn R B O

A How do we compute % TS
S(X1 U? """" el e
.



Path-Time Space
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space decomposition to include dynamic
constraints

A Safe trajectories end at goal position while
missing obstacles and respecting constraints




Obstacles in Patliime Space
L

: ! : 3
= gy o
______ \—R R e bt
i -

A Occupy some portion of path over time
A A forbidden region (red) in-P space
A Bounding box approximation (black)

A These constraints affect the shape of the
trajectories (blue
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Analytical Planner

v im T

0 O m ] =
. ) e
iiiim s v e g, @ e

A Exact, optimal, and polynomitime

A Can be used in the indicator functi®@{x, u)
when computingP(safe)



Analytical Planner




Computation ofS(X, u)
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Path (m)

The same scenario with slightly different initial velocities

A For a given state and control, the planner determines
whether a feasible trajectory to the goal region exists



Summary

A Presented Safety Constrained Minimal
Interference Principle

A Formulated two scenarios:
I Collision Avoidance Braking
I Unprotected LefiHand Turn at Intersections



Future Work

A Groundrisk index and
Interference index on
humandrivers

A Study humaneactions to
semiautonomous
longitudinal control
(shortterm and long
term adaptations)

TheDriveSafetypS600cDriving Simulator at TASI



Thank youl.



